metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Tom Otieno,^a* Andrea T. Pinkston,^a Natisha C. Johnson^a and Sean Parkin^b

^aDepartment of Chemistry, Eastern Kentucky University, Richmond, Kentucky 40475-3102, USA, and ^bDepartment of Chemistry, University of Kentucky, Lexington, Kentucky 40506-0055, USA

Correspondence e-mail: tom.otieno@eku.edu

Key indicators

Single-crystal X-ray study T = 173 K Mean σ (C–C) = 0.005 Å Disorder in main residue R factor = 0.049 wR factor = 0.129 Data-to-parameter ratio = 12.3

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Aquatetrakis(2-methylpyrazine- κN)(nitrato- κO)copper(II) nitrate

The copper(II) ion in the title compound, $[Cu(NO_3)-(mepyz)_4(H_2O)]NO_3$, where mepyz is 2-methylpyrazine $(C_5H_6N_2)$, has a distorted octahedral geometry with four N atoms of the methylpyrazine ligands in the equatorial positions and two O atoms from water and semi-coordinated nitrate moieties in the axial sites.

Received 20 May 2002 Accepted 5 June 2002 Online 14 June 2002

Comment

The preparation of coordination complexes may be influenced by several factors, including metal-to-ligand mole ratio, leading to the formation of multiple structural types from a single set of components. For example, the reaction of copper(II) nitrate and 1,2-diazine (pyridazine, pdz) in various mole ratios produces four distinct products: the trimetallic complex, $[Cu(pdz)_3(NO_3)_3]_2Cu$, and the monometallic complexes Cu(pdz)₃(NO₃)₂, Cu(pdz)₄(NO₃)₂ and [Cu(pdz)₄-(NO₃)](NO₃) (Otieno et al., 1995). In the case of the 1,4diazine (pyrazine, pyz) analogue, three different coordination polymers, having compositions of $Cu(pyz)(NO_3)_2$, $Cu(pyz)_2(NO_3)_2$ and $Cu(pyz)_3(NO_3)_2$, are obtained (Otieno et al., 2002). This work extends our investigations of the structural effects of copper(II)-nitrate-to-diazine-ligand mole ratio to include 2-methylpyrazine (mepyz).

The reaction of an aqueous solution of $Cu(NO_3)_2 \cdot xH_2O$ and 2-methylpyrazine in a 1:1 molar ratio produces a coordination polymer with the stoichiometry $Cu(mepyz)(NO_3)_2$ (Amaral *et al.*, 2001). A 1:12 molar ratio of the same reagents in water produces a monometallic species of composition [Cu-(mepyz)_4(H_2O)(NO_3)]NO_3, (I), whose structure is shown in Fig. 1. Selected bond lengths and angles are listed in Table 1. The compound consists of the [Cu(mepyz)_4(H_2O)(NO_3)]⁺ cation and NO_3⁻ counter-ion. The copper(II) ion has a distorted octahedral geometry with the four mepyz ligands in the equatorial positions and the semi-coordinated nitrate ion and water molecule in the axial sites. The mepyz ligands are

© 2002 International Union of Crystallography Printed in Great Britain – all rights reserved

4496 independent reflections 4037 reflections with $I > 2\sigma(I)$

Extinction coefficient: 0.0070 (17)

 $\theta_{\rm max} = 25.0^\circ$ $h=-9\rightarrow 10$

 $k = -14 \rightarrow 14$

 $l = -15 \rightarrow 15$

Atom-numbering scheme for the cation in the title compound, shown with 30% probability ellipsoids. The nitrate counter-ion has been omitted for clarity.

coordinated through the N atom distal to the methyl substituent and the pyrazine rings are twisted out of the CuN₄ plane $[average = 54.37 (15)^{\circ}, range = 45.29 (14)-57.79 (13)^{\circ}], such$ that the $Cu(mepyz)_4$ fragment assumes a propeller structure. One O atom of each nitrate ion forms $O-H \cdots O$ hydrogen bonds in which the coordinated water molecule acts as the Hatom donor (Table 2). The title compound is isostructural with its perchlorate analogue, $[Cu(mepyz)_4(H_2O)(ClO_4)]ClO_4$ (Navas et al., 1993). The copper-ligand bond lengths in the latter compound are: average Cu-N = 2.033 (3) Å, $Cu-OH_2$ $= 2.310 (3) \text{ Å} \text{ and } \text{Cu} - \text{OClO}_3 = 2.721 (4) \text{ Å}.$

Experimental

Dark-blue crystals of (I) were obtained by slow evaporation of a mixture of a 3 ml aqueous solution of Cu(NO₃)₂·2.5H₂O (1.00 g, 4.30 mmol) and 2-methylpyrazine (4.70 ml, 4.84 g, 51.4 mmol). Analysis found: C 40.79, H 4.37, N 23.79; C₂₀H₂₆CuN₁₀O₇ requires: C 41.27, H 4.50, N 24.06%. IR (cm⁻¹): 1676 (*wbr*), 1602 (*m*), 1524 (*m*), 1478 (*m*), 1396 (*s*), 1373 (*s*), 1316 (*s*), 1298 (*s*), 1253 (*s*), 1081 (*s*), 1040 (s), 1028 (s), 827 (s), 743 (m), 497 (s), 425 (s). Elemental analyses were performed by Midwest Microlab, Indianapolis, Indiana. Infrared spectra were recorded from hexachloro-1,3-butadiene mulls sandwiched between KRS-5 plates (International Crystal Laboratories) on a Bio-Rad Model FTS3000 FT-IR spectrometer.

Crystal data

$[Cu(NO_3)(C_5H_6N_2)_4(H_2O)]NO_3$	Z = 2
$M_r = 582.05$	$D_x = 1.518 \text{ Mg m}^{-3}$
Triclinic, P1	Mo $K\alpha$ radiation
a = 8.448 (1) Å	Cell parameters from 33129
b = 12.309(1) Å	reflections
c = 12.841 (1) Å	$\theta = 1.0-27.5^{\circ}$
$\alpha = 88.562 \ (10)^{\circ}$	$\mu = 0.92 \text{ mm}^{-1}$
$\beta = 72.938 \ (10)^{\circ}$	T = 173 (2) K
$\gamma = 86.242 \ (10)^{\circ}$	Irregular slab, blue
$V = 1273.8(2) \text{ Å}^3$	$0.30 \times 0.28 \times 0.12 \text{ mm}$

Nonius KappaCCD diffractometer	
ω scans at fixed $\chi = 55^{\circ}$	
Absorption correction: multi-scan	
(SCALEPACK; Otwinowski &	
Minor, 1997)	
$T_{\min} = 0.770, T_{\max} = 0.898$	
4496 measured reflections	

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0643P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.049$	+ 1.3703P]
$wR(F^2) = 0.129$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.06	$(\Delta/\sigma)_{\rm max} = 0.009$
4496 reflections	$\Delta \rho_{\rm max} = 1.25 \ {\rm e} \ {\rm \AA}^{-3}$
366 parameters	$\Delta \rho_{\rm min} = -0.47 \text{ e} \text{ \AA}^{-3}$
H-atom parameters constrained	Extinction correction: SHELXL97

Table 1

Selected geometric parameters (Å, °).

Cu-N3	2.021 (3)	Cu-N5	2.035 (3)
Cu-N7	2.033 (3)	Cu-O1	2.271 (2)
Cu-N1	2.034 (3)	Cu-O1N2	2.613 (3)
N3-Cu-N7	172.61 (11)	N1-Cu-O1	91.42 (10)
N3-Cu-N1	89.75 (10)	N5-Cu-O1	89.96 (10)
N7-Cu-N1	88.95 (10)	N3-Cu-O1N2	90.10 (10)
N3-Cu-N5	89.30 (10)	N7-Cu-O1N2	82.76 (10)
N7-Cu-N5	91.82 (11)	N1-Cu-O1N2	94.63 (10)
N1-Cu-N5	178.36 (10)	N5-Cu-O1N2	84.03 (10)
N3-Cu-O1	92.44 (10)	O1-Cu-O1N2	173.45 (9)
N7-Cu-O1	94.86 (11)		· · · ·

Table 2	
Hydrogen-bonding geometry (Å,	°).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O1-H1O\cdots O2N2^{i}$	0.82	1.94	2.746 (5)	164
O1−H2O···O3N1	0.86	1.88	2.719 (5)	167

Symmetry code: (i) x - 1, y, z.

H atoms were found in difference Fourier maps and refined using a riding model. Disorder of one of the rings (N7), which causes it to occupy two positions related by a 180° rotation, was identified in a difference map. It was modelled so that both components would maintain similar geometry, but was otherwise freely refined.

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP in SHELXTL (Sheldrick, 1994); software used to prepare material for publication: SHELXL97 and local procedures.

This work was supported by Eastern Kentucky University and Kentucky NSF EPSCoR.

References

Amaral, S., Jensen, W. E., Lande, C. P., Turnbull, M. M. & Woodward, F. M. (2001). Polyhedron, 20, 1317-1322.

Navas, C., Turnbull, M. M., Giogas, C., Landee, C. P., Zhang, W., Pon, G. & Willett, R. (1993). *Polyhedron*, **12**, 1019–1026.

- Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
- Otieno, T., Hutchison, A. R., Krepps, M. K. & Atwood, D. A. (2002). J. Chem. Educ. In the press.
- Otieno, T., Rettig, S. J., Thompson, R. C. & Trotter, J. (1995). Inorg. Chem. 34, 1718–1725.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307–326. New York: Academic Press.
- Sheldrick, G. M. (1994). XP in SHELXTL (Version 5). Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.